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J .  Phys. A Math. Gen. 24 (1991) L103-LlO7. Printed io the UK 

LE'ITER TO THE EDITOR 

On some quantum R matrices associated with representations 
of U,(s1(2, C)) when q is a root of unity 

M Couture 
Chalk River Nuclear Laboratories, AECL Research. Chalk River, Ontario. Canada KOJ 110 

Received 20 November 1990 

Abstract. We construct quantum R matrices associated with cenain non-cyclic irreducible 
representations of  Uy(sI(2, C)) at roots of unity which are parametrized by one continuous 
parameter. We find solutions for the two- and three-dimensional representations via 
Baxterization. The two-dimensional case corresponds to the free fermion model of Fan 
and Wu. 

An interesting problem from the point of view of solvable statistical models is the 
construction of quantum R matrices associated with representations of quantized 
universal enveloping algebras at roots of unity. Recently, quantum R matrices associ- 
ated with cyclic representations of U,,(sI(Z, C)) for 4"' = 1 (m odd) and U,(s1(3, @)) 
for 9'= 1 were constructed [1-31; in both cases only odd-dimensional representations 
were examined. In this letter, for a given irreducible representation at root of unity, 
our approach t o  constructing the quantum R matrix consists of first solving the 
associated solution of the braid relation (6); the quantum R matrix is then obtained 
through Baxterization. We consider the case of U,(s1(2, @)) and restrict our discussion 
to representation of the highest-weight type (non-cyclic) which are parametrized by 
one continuous parameter p ;  we solve for the two- and three-dimensional representa- 
tions. It turns out that the two-dimensional case leads to the free fermion model of 
Fan and Wu [4]; to our knowledge this connection is new. Let us now briefly introduce 
UJsI(2, C)) and the representations considered. 

U,(s1(2, C)) is an associative @-algebra generated by four generators J+, J-, k and 
k-l which satisfy the following relations 

in terms of the usual element H of the Cartan subalgebra 

k = qH" [ H ,  J'] = rt2J'. 

U,(s1(2,C)) is a Hopf algebra with comultiplication A, antipode S and co-unit E 

defined as follows 

A(J')=J*Qk+k-@J' S(I') = -4-5' S( k) = k- '  

E ( J * ) = O  e ( k ) = l .  
(IC) 
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Let V be an N-dimensional vector space whose basis we denote by U, O s  i s  N-I. 
Roche and Arnaudon [SI propose the following highest-weight representation (we 
make the following change of variable: p + p +  N - 1 )  

J + v ,  = 0 J - v N - ,  = O  koj = q i w + N - I ) / 2 - i  v; 

J+ui  =[(i),(p+N-i),]”’q_, 1 cis N -  1 (2) 
J-vj=[( i+ l )q(p+N-  1 - i ) , , ] ” * ~ ~ + ~  O s i s N - 2  

where p is a free parameter. For N odd 9 is a primitive Nth  or 2Nth root of unity 
while for N even 9 is restricted to primitive 2Nth roots of unity. Let us denote the 
representation of any g E U,, by rr(g);  we now solve, in the case N = 2 and N = 3, for 
a matrix R E  End( VO V )  such that 

R ( m O m ) A ( g )  = ( r r O w ) i ( g ) R  all g E U,(s1(2, e) )  (3) 
where i ( g )  = 7A(g) and T ( g O g ‘ )  = g’Og for g, g’E U,. We express our results in 
terms of the matrix S= Pr where P E  End( VO V )  is the transposition map ( P ( x O y )  = 
y O x ,  x ,  Y E  V. Denoting by SI,, the solution corresponding to the two-dimensional 
case where q4= 1 and making the identification p = 9’+’ we get 

S,,,=blockdiag(u,,u,, u - ~ )  

(4) 
U,  = 1 u 2 = ( 0  .) u - l = P  2 9 -2 . 

P 1 - P  
In the case N = 3 (q3= 1 or q6= I )  and with the identification p = 9’+* we obtain 

S,,,=block diag ( U , ,  u2, u3, n-*, u - ~ )  

U1 = 1 U-, = p49-8 

where I E End( V )  is the identity matrix. The relation (6) corresponds to one of the 
defining relations of Artin’s braid group B,. SI,, and SI,, are the first two of a family 
of solutions that were first obtained by solving (6) directly [ 6 ] .  These solutions proved 
to be of interest in knot theory where Si?, has been related to the Conway polynomial 
[7]. The connection between the Conway polynomial and the two-dimensional rep- 
resentation given in (2) is believed to be new. Note that the solution Sl2, obtained by 
setting U-,  = 1 in (4) is related to the Jones polynomial and is associated with the 
two-dimensional representation of U,(s1(2, C)) with 9 generic. 

The quantum R matrix R ( x )  is a solution of the quantum Yang-Baxter equation 

where R ( x )  E End( VO V )  and x, y are the multiplicative spectral parameters. In order 
to transform a solution S of (6) into its corresponding quantum R matrix we use the 
following two formulae [8] 

I’ R ( x )  = S + A , A , X S - ~  (8) 

( R ( x ) o r ) ( i o R ( x y ) ) ( R ( y ) O r )  = (ioR(y))(R(~~)oi)(iod(x)) (7) 
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in the case where S has two distinct eigenvalues A ,  and A 2 ,  and 

R(x) = A , A , x ( x - ~ ) s - ' + A ~  1 +-+-+- xi  -(x- 1)s (9) ( :: :: 
in the cases where S has three distinct eigenvalues A , ,  A 2  and A , ;  I is the identity 
matrix. Note that in the both cases k ( x  = 0) = S. While formula (8) is a proven result, 
formula (9) is only a conjecture which has proved to be valid in all cases examined 
so far; in this paper the validity of the results cited below have been established by 
direct substitution in (7) using a symbolic manipulation computer code. For details 
on how these formulae were constructed and the many cases in which they were used 
see [&lo]. Let us first consider the Baxterization of S,,, which has two distinct 
eigenvalues A ,  = 1 and A 2 =  -p2.  Substituting (4) into (8) and with the identification 
x-e-2e  and p = e" we get 

R(x)=block diag (u , ,u , ,u~, )  

U, =sinh(v-8) U-, = sinh(v+ 8 )  

sinh( 7) sinh( 0)  
u2=( sinh(8) sinh(v) 

where we made use of the symmetry-breaking transformation described in [ l l ]  to 

free fermion model of Fan and Wu [4]. 

d(x)=blockdiag(u, ,u2,u3,  U - ~ , U - , )  

restore the s y m "  of the diagona! e!ements; (lo) is the quantum R matrix of the 

2 The Baxterization of.S,,, is done using (9) with A ,  = 1, A2=p-p and A,=p'q-' 

U, = p4q4x(x - l)+p4q4x(l- q2p?)(1 -p -Z ) - (x  - 1)  

U-, =x(x-  l)+p4q4(1- qZpP)(l - p P ) x  -p4q4(x - 1 )  
p2q4x(1 -p -2q2) (p2-x )  p$ (x  - l)(X - p 2 )  

xp4q4( 1 - p- ' ) (x  - q2p-Z) p344(x - l)(X -p?q2) 

/p 4 4 2  q x (l-p-2)(l-p-2q2) -qdnx(x-l) p 2 q 4 ( x - l ) ( x - q 2 )  \ 
p3q4(x--1)(x-p-2q2) p4q4(1 - p - 2 ) ( x - q 2 p - 2 )  

-q4ax(x-l) P (11) 
p2q4(x-1)(x-q2) 

a =  [ p 2 ( 1  - p 2 ) ( l - p 2 q - 2 ) ( q 2 + q 4 ) ] 1 ' 2  

U 3  = 

with 

p = p 2 ~ ( ~  - 1 )  + p4q4(1 - q 2 p - 2 ) ( ~  - P - ~ ) x - P ~ ~ ~ ( x  - I )  
and where q3 = 1 or q6 = 1. 

We conclude by briefly discussing related works. 
In this paper we have linked the solutions S,,, and S,,, reponed in [ 6 ]  to representa- 

tions of U, (sI(2, C ) )  when q" = 1. Recently, other interpretations of these solutions 
have been proposed. In [12], the following two-parameters ( p  and q )  deformation of 
the enveloping algebra of A , ,  to which an additional generator Ho has been added, 
has been proposed. 

k,Z*k;'  = (qp)*Z* k,Z*k;' =(qp)*pF'Z* 
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with 

k , = ( 9 ~ ) ~ " ,  k,  = pH*( q /  p )  (13) 
and where Ho commutes with all generators. We omit the details of the Hopf structure. 
When p = 1, we have k ,  = k, and the above algebraic structure reduces to that of 
U,(sl(Z, C)). The interesting case is when 9 is equal to a root of unity and p is generic: 
using 3 =Z,e,Oe" as his definition of universal 3 matrix, with e, being the basis 
of the Hopf subalgebra generated by Hu, H, and Z-, and e" its dual basis, Lee gives 
N-dimensional representations of the generators H o ,  H,,  Z+ and Z-  and explicit 
bases e, and e"; in this way he generates a series of solutions of (6)  the first two of 
which correspond to (4) and (5). He views this algebra as different from U,(s1(2, C)) 
(it has two k's ( k ,  and k 2 ) ,  different relations and Hopf structure and an additional 
generator) and refers to it as the twisted quantum group of A, .  The obvious question 
is whether there is any connection between the algebraic structure described in (13) 
and that of U,(s1(2,@)). If we define a new set of generators It, J -  and k such that 

J +  k , Z +  J - E  Z - k ; '  k ' = k , k ,  

it is easy to check that the algebra defined in (12) reduces to Uq(s1(2,C)) with the 
only difference being in the definition of k :  

H , l2  HOD,  k = q  P 

Following such a transformation p no longer appears as a deformation parameter, its 
only role being in the definition of k The twisted quantum group of A,  as defined in 
[I21 can now be viewed as UJsI(2, e) )  at roots of unity; the presence of the parameter 
p is consistent with the fact that the representations described in (2) are parametrized 
by one free parameter p which can be recovered by setting p = q"; finally, H, and Ho 
can be combined into a single generator. 

The quantized universal enveloping algebra associated with the solutions reported 
in [6] was also investigated in [13,14], using a method [15] of Fadeev el a/ which 
consists in constructing the algebra starting with the matrix S. Although the method 
has been applied only to S,2) [13] and Sol [14], the main result of this exercise points 
to the following conclusion: starting with S,,, one obtains an algebra whose relations 
arethoseofU,(sI(Z,C)) w i t h 9 = o N ( o ~ = l ) a n d w i t h ( J t ) N = ( J - ) N = O a s a d d i t i o n a l  
relations; we denote this algebra U,,(s1(2, C)). U,,(s1(2, C)) has only N-dimensional 
faithful irreducible representations. To every solution S, , ,  one therefore associates a 
different algebra (different in the sense that the value of q and the additional relations 
are different). These results are consistent with the results presented in this letter and 
reflect the fact that these solutions are associated with the two- and three-dimensional 
representations at the root of unity. Recently, SI,, and &) have been related through 
the Lie superalgebra g l ( K / L )  with K + L = 2  [16]. 

Finally, in a recent letter [I71 it was shown that one may obtain solutions such as 
SI,) and SI3, by restricting a modified universal R-matrix to the two- and three- 
dimensional representations of Uq(sl(2,C)) for q not a root of unity. In summary we 
have examined in this letter a method of constructing quantum R matrices associated 
with representations of U,(s1(2, C)) at roots of unity via Baxterization. We have 
considered certain highest-weight representations proposed by Roche and Arnaudon 
[ 5 ]  and more recently by DeConcini and Kac [18], and in the process have shown 
that the solutions reported in [6] are associated with these representations. The method 
could be applied in principle to any quantized enveloping algebra; progress in this 
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direction will require proofs of the Baxterization formulae for three and more distinct 
eigenvalues (to our knowledge a proof does not exist). 

I thank W Zhao for discussions. 
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