On some quantum R matrices associated with representations of $U_{q}(s l(2, C))$ when q is a root of unity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L103
(http://iopscience.iop.org/0305-4470/24/3/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:05

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On some quantum R matrices associated with representations of $U_{q}(\operatorname{sl}(2, \mathbb{C})$) when q is a root of unity

M Couture
Chalk River Nuclear Laboratories, AECL Research, Chalk River, Ontario, Canada K0J 1J0

Received 20 November 1990

Abstract

We construct quantum R matrices associated with certain non-cyclic irreducible representations of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ at roots of unity which are parametrized by one continuous parameter. We find solutions for the two- and three-dimensional representations via Baxterization. The two-dimensional case corresponds to the free fermion model of Fan and Wu .

An interesting problem from the point of view of solvable statistical models is the construction of quantum R matrices associated with representations of quantized universal enveloping algebras at roots of unity. Recently, quantum R matrices associated with cyclic representations of $\mathrm{U}_{q}(\mathrm{sl}(2 ; \mathbb{C}))$ for $q^{m}=1(m$ odd $)$ and $\mathrm{U}_{q}(\mathrm{sl}(3, \mathbb{C}))$ for $q^{3}=1$ were constructed [1-3]; in both cases only odd-dimensional representations were examined. In this letter, for a given irreducible representation at root of unity, our approach to constructing the quantum R matrix consists of first solving the associated solution of the braid relation (6); the quantum R matrix is then obtained through Baxterization. We consider the case of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ and restrict our discussion to representation of the highest-weight type (non-cyclic) which are parametrized by one continuous parameter μ; we solve for the two- and three-dimensional representations. It turns out that the two-dimensional case leads to the free fermion model of Fan and Wu [4]; to our knowledge this connection is new. Let us now briefly introduce $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ and the representations considered.
$\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ is an associative \mathbb{C}-algebra generated by four generators J^{+}, J^{-}, k and k^{-1} which satisfy the following relations

$$
\begin{equation*}
k k^{-1}=k^{-1} k=1 \quad k J^{ \pm} k^{-}=q^{ \pm} J^{ \pm} \quad\left[J^{+}, J^{-}\right]=\frac{k^{2}-k^{-2}}{q-q^{-1}} \tag{1a}
\end{equation*}
$$

in terms of the usual element H of the Cartan subalgebra

$$
\begin{equation*}
k=q^{H / 2} \quad\left[H, J^{ \pm}\right]= \pm 2 J^{ \pm} . \tag{1b}
\end{equation*}
$$

$\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C})$) is a Hopf algebra with comultiplication Δ, antipode S and co-unit ε defined as follows

$$
\begin{align*}
& \Delta\left(J^{ \pm}\right)=J^{ \pm} \otimes k+k^{-} \otimes J^{ \pm} \quad S\left(J^{ \pm}\right)=-q^{\mp} J^{ \pm} \quad S(k)=k^{-1} \tag{1c}\\
& \varepsilon\left(J^{ \pm}\right)=0 \quad \varepsilon(k)=1 .
\end{align*}
$$

Let V be an N-dimensional vector space whose basis we denote by $v_{i} 0 \leqslant i \leqslant N-1$. Roche and Arnaudon [5] propose the following highest-weight representation (we make the following change of variable: $\mu \rightarrow \mu+N-1$)

$$
\begin{array}{lcc}
k v_{i}=q^{(\mu+N-1) / 2-i} v_{i} \quad J^{+} v_{0}=0 & J^{-} v_{N-1}=0 \\
J^{+} v_{i}=\left[(i)_{q}(\mu+N-i)_{q}\right]^{1 / 2} v_{i-1} & 1 \leqslant i \leqslant N-1 \tag{2}\\
J^{-} v_{i}=\left[(i+1)_{q}(\mu+N-1-i)_{q}\right]^{1 / 2} v_{i+1} & 0 \leqslant i \leqslant N-2
\end{array}
$$

where μ is a free parameter. For N odd q is a primitive N th or $2 N$ th root of unity while for N even q is restricted to primitive $2 N$ th roots of unity. Let us denote the representation of any $g \in U_{q}$ by $\pi(g)$; we now solve, in the case $N=2$ and $N=3$, for a matrix $R \in \operatorname{End}(V \otimes V)$ such that

$$
\begin{equation*}
R(\pi \otimes \pi) \Delta(g)=(\pi \otimes \pi) \bar{\Delta}(g) R \quad \text { all } g \in \mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C})) \tag{3}
\end{equation*}
$$

where $\bar{\Delta}(g)=\tau \Delta(g)$ and $\tau\left(g \otimes g^{\prime}\right)=g^{\prime} \otimes g$ for $g, g^{\prime} \in U_{q}$. We express our results in terms of the matrix $S=\operatorname{Pr}$ where $P \in \operatorname{End}(V \otimes V)$ is the transposition map $(P(x \otimes y)=$ $y \otimes x, x, y \in V$. Denoting by $S_{(2)}$ the solution corresponding to the two-dimensional case where $q^{4}=1$ and making the identification $p \equiv q^{\mu+1}$ we get

$$
\begin{align*}
& S_{(2)}=\operatorname{block} \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{-1}\right) \\
& \sigma_{1}=1 \quad \sigma_{2}=\left(\begin{array}{cc}
0 & p \\
p & 1-p^{2}
\end{array}\right) \quad \sigma_{-1}=p^{2} q^{-2} . \tag{4}
\end{align*}
$$

In the case $N=3\left(q^{3}=1\right.$ or $\left.q^{6}=1\right)$ and with the identification $p \equiv q^{\mu+2}$ we obtain
$S_{(3)}=$ block diag $\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{-2}, \sigma_{-1}\right)$
$\sigma_{1}=1 \quad \sigma_{-1}=p^{4} q^{-8}$
$\sigma_{2}=\left(\begin{array}{cc}0 & p \\ p & 1-p^{2}\end{array}\right) \quad \sigma_{-2}=\left(\begin{array}{cc}0 & p^{3} q^{-4} \\ p^{3} q^{-4} & p^{2}\left(q^{-2}+q^{-4}\right)\left(1-p^{2} q^{-2}\right)\end{array}\right)$

$$
\sigma_{3}=\left[\begin{array}{ccc}
0 & 0 & p^{2} \tag{5}\\
0 & p^{2} q^{-2} & -q^{-2}\left[p^{2}\left(1-p^{2}\right)\left(1-p^{2} q^{-2}\right)\left(q^{2}+q^{4}\right)\right]^{1 / 2} \\
p^{2} & -q^{-2}\left[p^{2}\left(1-p^{2}\right)\left(1-p^{2} q^{-2}\right)\left(q^{2}+q^{4}\right)\right]^{1 / 2} & \left(1-p^{2}\right)\left(1-q^{-2} p^{2}\right)
\end{array}\right] .
$$

The matrix S satisfies

$$
\begin{equation*}
(S \otimes I)(I \otimes S)(S \otimes I)=(I \otimes S)(S \otimes I)(I \otimes S) \tag{6}
\end{equation*}
$$

where $I \in \operatorname{End}(V)$ is the identity matrix. The relation (6) corresponds to one of the defining relations of Artin's braid group $\mathbb{B}_{n} . S_{(2)}$ and $S_{(3)}$ are the first two of a family of solutions that were first obtained by solving (6) directly [6]. These solutions proved to be of interest in knot theory where $S_{(2)}$ has been related to the Conway polynomial [7]. The connection between the Conway polynomial and the two-dimensional representation given in (2) is believed to be new. Note that the solution $\bar{S}_{(2}$, obtained by setting $\sigma_{-1}=1$ in (4) is related to the Jones polynomial and is associated with the two-dimensional representation of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ with q generic.

The quantum R matrix $\dot{R}(x)$ is a solution of the quantum Yang-Baxter equation $(\check{R}(x) \otimes I)(I \otimes \check{R}(x y))(\check{R}(y) \otimes I)=(I \otimes \check{R}(y))(\check{R}(x y) \otimes I)(I \otimes \check{R}(x))$ where $\check{R}(x) \in \operatorname{End}(V \otimes V)$ and x, y are the multiplicative spectral parameters. In order to transform a solution S of (6) into its corresponding quantum R matrix we use the following two formulae [8]

$$
\begin{equation*}
\check{R}(x)=S+\lambda_{1} \lambda_{2} x S^{-1} \tag{8}
\end{equation*}
$$

in the case where S has two distinct eigenvalues λ_{1} and λ_{2}, and

$$
\begin{equation*}
\check{R}(x)=\lambda_{1} \lambda_{3} x(x-1) S^{-1}+\lambda_{3}\left(1+\frac{\lambda_{1}}{\lambda_{2}}+\frac{\lambda_{1}}{\lambda_{3}}+\frac{\lambda_{2}}{\lambda_{3}}\right) x I-(x-1) S \tag{9}
\end{equation*}
$$

in the cases where S has three distinct eigenvalues λ_{1}, λ_{2} and $\lambda_{3} ; I$ is the identity matrix. Note that in the both cases $\check{R}(x=0)=S$. While formula (8) is a proven result, formula (9) is only a conjecture which has proved to be valid in all cases examined so far; in this paper the validity of the results cited below have been established by direct substitution in (7) using a symbolic manipulation computer code. For details on how these formulae were constructed and the many cases in which they were used see [8-10]. Let us first consider the Baxterization of $S_{(2)}$ which has two distinct eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=-p^{2}$. Substituting (4) into (8) and with the identification $x \equiv \mathrm{e}^{-2 \theta}$ and $p \equiv \mathrm{e}^{\eta}$ we get

$$
\begin{align*}
& \check{R}(x)=\operatorname{block} \operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{-1}\right) \\
& \sigma_{1}=\sinh (\eta-\theta) \quad \sigma_{-1}=\sinh (\eta+\theta) \\
& \sigma_{2}=\left(\begin{array}{ll}
\sinh (\eta) & \sinh (\theta) \\
\sinh (\theta) & \sinh (\eta)
\end{array}\right) \tag{10}
\end{align*}
$$

where we made use of the symmetry-breaking transformation described in [11] to restore the symmetry of the diagonal elements; (10) is the quantum R matrix of the free fermion model of Fan and Wu [4].

The Baxterization of $S_{(3)}$ is done using (9) with $\lambda_{1}=1, \lambda_{2}=p-p^{2}$ and $\lambda_{3}=p^{4} q^{-2}$ $\check{R}(x)=$ block $\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{-2}, \sigma_{-1}\right)$
$\sigma_{1}=p^{4} q^{4} x(x-1)+p^{4} q^{4} x\left(1-q^{2} p^{-2}\right)\left(1-p^{-2}\right)-(x-1)$
$\sigma_{-1}=x(x-1)+p^{4} q^{4}\left(1-q^{2} p^{-2}\right)\left(1-p^{-2}\right) x-p^{4} q^{4}(x-1)$
$\sigma_{-2}=\left(\begin{array}{cc}p^{2} q^{4} x\left(1-p^{-2} q^{2}\right)\left(p^{2}-x\right) & p q^{2}(x-1)\left(x-p^{2}\right) \\ p q^{2}(x-1)\left(x-p^{2}\right) & p^{4} q^{4}\left(1-p^{-2} q^{2}\right)\left(1-p^{-2} x\right)\end{array}\right)$
$\sigma_{2}=\left(\begin{array}{cc}x p^{4} q^{4}\left(1-p^{-2}\right)\left(x-q^{2} p^{-2}\right) & p^{3} q^{4}(x-1)\left(x-p^{-2} q^{2}\right) \\ p^{3} q^{4}(x-1)\left(x-p^{-2} q^{2}\right) & p^{4} q^{4}\left(1-p^{-2}\right)\left(x-q^{2} p^{-2}\right)\end{array}\right)$
$\sigma_{3}=\left(\begin{array}{ccc}p^{4} q^{4} x^{2}\left(1-p^{-2}\right)\left(1-p^{-2} q^{2}\right) & -q^{4} \alpha x(x-1) & p^{2} q^{4}(x-1)\left(x-q^{2}\right) \\ -q^{4} \alpha x(x-1) & \beta & -q^{4} \alpha(x-1) \\ p^{2} q^{4}(x-1)\left(x-q^{2}\right) & -q^{4} \alpha(x-1) & \left(1-p^{-2} q^{2}\right)\left(1-p^{-2}\right) p^{4} q^{4}\end{array}\right)$
with

$$
\begin{aligned}
& \alpha \equiv\left[p^{2}\left(1-p^{2}\right)\left(1-p^{2} q^{-2}\right)\left(q^{2}+q^{4}\right)\right]^{1 / 2} \\
& \beta \equiv p^{2} x(x-1)+p^{4} q^{4}\left(1-q^{2} p^{-2}\right)\left(1-p^{-2}\right) x-p^{2} q^{4}(x-1)
\end{aligned}
$$

and where $q^{3}=1$ or $q^{6}=1$.
We conclude by briefly discussing related works.
In this paper we have linked the solutions $S_{(2)}$ and $S_{(3)}$ reported in [6] to representations of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ when $q^{m}=1$. Recently, other interpretations of these solutions have been proposed. In [12], the following two-parameters (p and q) deformation of the enveloping algebra of A_{1}, to which an additional generator H_{0} has been added, has been proposed.

$$
\begin{array}{lc}
{\left[H_{1}, Z^{ \pm}\right]= \pm 2 Z^{ \pm}} & Z^{+} Z^{-}-p^{2} Z^{-} Z^{+}=\frac{k_{2}^{2}-k_{1}^{-2}}{q-q^{-1}} \tag{12}\\
k_{1} Z^{ \pm} k_{1}^{-1}=(q p)^{ \pm} Z^{ \pm} & k_{2} Z^{ \pm} k_{2}^{-1}=(q p)^{ \pm} p^{\mp 2} Z^{ \pm}
\end{array}
$$

with

$$
\begin{equation*}
k_{1}=(q p)^{H_{1} / 2} \quad k_{2}=p^{H_{0}}(q / p)^{H_{1} / 2} \tag{13}
\end{equation*}
$$

and where H_{0} commutes with all generators. We omit the details of the Hopf structure. When $p=1$, we have $k_{1}=k_{2}$ and the above algebraic structure reduces to that of $\mathrm{U}_{q}(\operatorname{sl}(2, \mathbb{C}))$. The interesting case is when q is equal to a root of unity and p is generic: using $\mathscr{R}=\Sigma_{\sigma} e_{\sigma} \otimes e^{\sigma}$ as his definition of universal \mathscr{R} matrix, with e_{σ} being the basis of the Hopf subalgebra generated by H_{0}, H_{1} and Z^{-}, and e^{σ} its dual basis, Lee gives N-dimensional representations of the generators H_{0}, H_{1}, Z^{+}and Z^{-}and explicit bases e_{σ} and e^{σ}; in this way he generates a series of solutions of (6) the first two of which correspond to (4) and (5). He views this algebra as different from $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C})$) (it has two k 's (k_{1} and k_{2}), different relations and Hopf structure and an additional generator) and refers to it as the twisted quantum group of A_{1}. The obvious question is whether there is any connection between the algebraic structure described in (13) and that of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$. If we define a new set of generators J^{+}, J^{-}and k such that

$$
J^{+} \equiv k_{1} Z^{+} \quad J^{-} \equiv Z^{-} k_{2}^{-1} \quad k^{2}=k_{1} k_{2}
$$

it is easy to check that the algebra defined in (12) reduces to $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ with the only difference being in the definition of k :

$$
k=q^{H_{1} / 2} p^{H_{0} / 2}
$$

Following such a transformation p no longer appears as a deformation parameter, its only role being in the definition of k. The twisted quantum group of A_{1} as defined in [12] can now be viewed as $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ at roots of unity; the presence of the parameter p is consistent with the fact that the representations described in (2) are parametrized by one free parameter μ which can be recovered by setting $p \equiv q^{\mu}$; finally, H_{1} and H_{0} can be combined into a single generator.

The quantized universal enveloping algebra associated with the solutions reported in [6] was also investigated in [13,14], using a method [15] of Fadeev et al which consists in constructing the algebra starting with the matrix S. Although the method has been applied only to $S_{(2)}$ [13] and $S_{(3)}$ [14], the main result of this exercise points to the following conclusion: starting with $S_{(N)}$ one obtains an algebra whose relations are those of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C}))$ with $q=\omega_{N}\left(\omega_{N}^{N}=1\right)$ and with $\left(J^{+}\right)^{N}=\left(J^{-}\right)^{N}=0$ as additional relations; we denote this algebra $\mathrm{U}_{\omega_{N}}(\mathrm{sl}(2, \mathbb{C})) . \mathrm{U}_{\omega_{N}}(\mathrm{sl}(2, \mathbb{C}))$ has only N-dimensional faithful irreducible representations. To every solution $S_{(N)}$ one therefore associates a different algebra (different in the sense that the value of q and the additional relations are different). These results are consistent with the results presented in this letter and reflect the fact that these solutions are associated with the two- and three-dimensional representations at the root of unity. Recently, $S_{(2)}$ and $\bar{S}_{(2)}$ have been related through the Lie superalgebra $\mathrm{gl}(K / L)$ with $K+L=2$ [16].

Finally, in a recent letter [17] it was shown that one may obtain solutions such as $S_{(2)}$ and $S_{(3)}$ by restricting a modified universal R-matrix to the two- and threedimensional representations of $\mathrm{U}_{q}(\mathrm{sl}(2, \mathbb{C})$) for q not a root of unity. In summary we have examined in this letter a method of constructing quantum R matrices associated with representations of $\left.U_{q}(s)(2, \mathbb{C})\right)$ at roots of unity via Baxterization. We have considered certain highest-weight representations proposed by Roche and Arnaudon [5] and more recently by De Concini and Kac [18], and in the process have shown that the solutions reported in [6] are associated with these representations. The method could be applied in principle to any quantized enveloping algebra; progress in this
direction will require proofs of the Baxterization formulae for three and more distinct eigenvalues (to our knowledge a proof does not exist).

I thank W Zhao for discussions.

References

[1] Bazhanov V V and Stronganov Yu G 1990 J. Stat. Phys. 51799
[2] Date E, Jimbo M, Miki K and Miewa T 1990 Phys. Lett. 148A 45
[3] Bazhanov V V and Kashaev R M 1990 Cyclic L operators with 3-state R-matrix Preprint
[4] Fan C and Wu F Y 1970 Phys. Rev. B 2723
Sogo K, Uchinami M, Akutsu Y and Wadati M 1982 Prog. Theor. Phys. 68508
[5] Roche P and Arnaudon D 1989 Lett. Math. Phys. 17295
[6] Couture M, Lee H C and Schmeing N C 1989 A new family of N-state representations of the Braid group Proc. of a NATO Advanced Study Institute on Physics, Geometry and Topology ed H C Lee (New York: Plenum)
[7] Deguchi T 1989 J. Phys. Soc. Japan 583441
[8] Ge M L, Xui K and Wu Y S 1990 Preprint Stony Brook ITP.SB-90-02
[9] Couture M, Cheng Y, Ge M L and Xue K 1990 New solutions of the Yang-Baxter equation and their Yang-Baxterization Int. J. Mod. Phys. to appear
[10] Couture M, Ge M L and Lee H C 1990 New Braid group representations of the B_{2}, B_{3} and B_{4} types, their associated link polynomials and quantum R matrices J. Phys. A: Math. Gen. 234751
[11] Sogo K, Akutsu Y and Abe T 1983 Prog. Theor. Phys. 70 730; 739
[12] Lee H C 1990 Twisted quantum groups of A_{n} and the Alexander-Conway link polynomial Preprint Chalk River
[13] Jing N, Ge M L and Wu Y S 1990 New quantum group associated with a non-standard Braid group representation Preprint Stony Brook ITP-SB-90-21
[14] Ge M L and Wu ACT 1990 Quantum group constructed from the non-staridard Braid group representation in the Faddeev-Reshetikhin-Takhtajan approach I Preprint Stony Brook ITP-SB-90-23
[15] Fadeev L D, Reshetikhin N Yu and Takhtajan L A 1987 Preprint LOMI E-14-87
[16] Deguchi T and Akutsu Y 1990 J. Phys. A: Math. Gen. 231861
[17] Ge M L, Sun C P, Wang L Y and Xue K 1990 J. Phys. A: Math. Gen. 23 L64S
[18] De Concini C and Kac V G 1990 Representations of quantum groups at roots of 1 Preprint MIT

